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Crystallization kinetics of gehlenite glass 
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Isothermal and non-isothermal kinetics of gehlenite glass devitrification have been 
studied. A Johnson-MehI-Avrami rate equation was assumed. The values of kinetic 
parameters obtained from XRD patterns and DTA curves are in a good agreement. The 
crystallization process is thought to proceed by a rod-like growth controlled by diffusion 
from a fixed number of nuclei. 

1. I ntrod uction 
In previous papers [1,2] the devitrification behav- 
iour of melilitic glasses was studied. Their compo- 
sitions, expressed by the formula 2 CaO. (1 - - x )  
MgO "xAla03 �9 (2 - -x)  SiO2 with 0 ~<x % 1, fallin 
the range of solid solutions between the end mem- 
bers akermanite (Ca2Mg Si207) and gehlenite 
(C% A12 SiOT). Conclusions were drawn about the 
crystallization mechanism taking into account 
that: (a) all the as-quenched glasses revealed a 
phase separation and (b) glasses with x ~< 0.6 crys- 
tallized through a metastable intermediate phase, 
Ca3Mg Si2 08. 

The aim of the present paper was to analyse the 
crystallization kinetics of gehlenite glass by means 
of isothermal and non-isothermal methods, in 
order to suggest a reaction mechanism consistent 
with the experimental results. 

2. Experimental procedure 
Gehlenite glass was prepared by melting pure re- 
agents at 1700~ C in a graphite crucible in an elec- 
tric oven. The melt was cast in distilled water at a 
high cooling rate. 

The heat treatments were performed in a DTA 
furnace on 100mg powdered specimens to elimin- 
ate temperature gradients. Moreover temperatures 
and times were easily and exactly evaluated on 
isothermal DTA curves. The samples were heated 
at 20 ~ C min-1 up to the selected growth tempera- 
tures. Growth times were measured from the time 

at which the samples reached the desired tempera- 
tures. 

The quantitative determinations of the trans- 
formation was done by means of X-ray diffraction 
(XRD) analysis by the powder method using a 
Philips PW 1011 apparatus. CuKa radiation was 
used in all cases. 

The calibration curve of X-ray peak intensity 
versus weight per cent of crystalline phase was 
obtained by using mixtures of  glass and 100% 
crystalline gehlenite, in different proportions. The 
crystalline standard was prepared by heating 
gehlenite glass up to 1100 ~ C in a DTA apparatus. 
To verify the degree of crystallinity a second run 
up to the same temperature was carried out. As no 
thermal effect was recorded and no difference in 
the X-ray patterns of crystallized samples after the 
first and the second run was found, a 100% degree 
of crystallinity was assumed. To eliminate the 
effect of preferred orientations of the crystals the 
three stronger peaks (d = 2.85; 1.75 ; 3.07 A) were 
selected. Each intensity value was averaged over 
five measurements. Plotting the ratio of the dif- 
fracted intensity from mixtures to that from a 
completely crystalline sample against the weight 
per cent of crystalline phase present, a single cali- 
bration curve, i.e. a straight line with a slope nearly 
1, for all the three peaks examined, was obtained 
as shown in Fig. 1. 

Differential thermal analysis (DTA) curves at 
different heating rates (2 to 20~ rain -1), in air, 
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Figure 1 X-ray calibration curve for mixtures of crystal- 
line and amorphous gehlenite. 

of  90 mg powdered specimens were recorded; the 
particles w e r e - - 1 7 0  to + 230 mesh and the re- 
ference material was A1203. A Netzch thermo- 
analyser 404M was used. 

3. Results and discussion 
3.1. Isothermal kinetics 
The percentage of  crystallization detected by XRD 
analysis is shown in Fig. 2 as function of  time. 
Growth temperatures ranged from 895 to 946 ~ C. 

To obtain kinetic parameters the following rate 
equation was assumed: 

dy 
- -  = k" t n - ' ( 1  - - y )  (1)  
dt 

where y is the fraction reacted at time t, n the 
reaction order and k is related to temperature T by 
an Arrhenius-type equation: 
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Figure 2 Isothermal devitrification curves. 
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Figure 3 Johnson-Mehl-Avrami equation plot (a) 895 ~ C; 
(b) 912 ~ C; (c) 929 ~ C; (d) 946 ~ C. 

k = A exp(--E/RT),  (2) 

where E is the activation energy and A a constant. 
The integrated form of Equation 1 

l n ( l ~ l y )  = (kt) n (3) 

is the well-known Johnson-Mehl-Avrami  (JMA) 
[3, 4] equation which describes a wide number of  
solid state reactions [5].  

Taking the logarithms of  Equation 3 

l n l n ( l @ y )  = n l n k + n l n t  (4) 

and plotting In In ( ~ /  versus In t, straight lines 

at each temperature, with nearly the same slope, 
were obtained as shown in Fig. 3. From their 
slopes and intercepts, a reaction order n and kin- 
etic constant k could be evaluated. A plot of  in k 
versus 1/T, Fig. 4, gave, in accordance with 
Equation 3, a straight line with slope --E/R. 

The reaction order and activation energy values 
so calculated, are reported in Table I. 

T A B L E I Kinetics parameters 

Investigation method E n 
(kcal mo1-1 ) 

Isothermal kinetics (XRD) 148 1 
Non-isothermal kinetics (DTA) 135 1 
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Figure 4 Arrhenius equation plot. 

3 . 2 .  N o n - i s o t h e r m a l  k i n e t i c s  

Kinetic parameters were also evaluated by  means 
of  DTA analysis. The method [6] is based on 

some theoretical  assumptions. In a DTA curve, 
Fig. 5, the A T deflection from the base line at any 
given instant is proport ional  to the instantaneous 
reaction rate [7] ; during a DTA run the t ime of  
heating t at each temperature T is inversely pro- 
port ional  to the heating rate h if the lat ter  is 

constant [6] .  In the advancing part  of  the crystal- 
lization peak the change in T has a much greater 
effect on the change in A T  than on the change in 

y [8] .  Also taking into account that  at the peak 
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Figure 5 Crystallization peak of gehlenite glass detected 
by DTA. 
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Figure 6 Plot of in Zx T versus 1/T (the values of Zx T and T 
are derived from a DTA curve recorded at 20 ~ C rnin -~ ). 

temperature TM, the &T deflection has a null tem- 
perature derivative, for kinetics governed by a 
JMA equation, the following two equations can be 

de rived; 

nE 
in A T  - + C (5) 

R T  

E 
In h - - -  + C'  (6) 

RTM 

where C and C'  are constants. 

Plotting In A T  versus l IT  and l n h  versus 
1/TM two straight lines were obtained as shown in 
Figs. 6 and 7 respectively. The values of  E and n 

calculated from their slopes are reported in Table I. 

Figure 7 Plot of In h versus I/T M (the values of TM are 
read on DTA curves recorded at different heating rates). 
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3.3. Reaction mechanism 
From isothermal and non-isothermal results a reac- 
tion order n ~- 1 can be estimated. A JMA 
equation with n = 1 describes a rod-like growth 
controlled by diffusion from a fixed number of 
nuclei [5, 9]. 

As the crystalline phase and the glass examined 
have the same composition no long range diffusion 
should have been needed. SAXS measurements 
revealed the presence of discrete and independent 
droplets of a separated phase [ 1 ]. Guinier analysis 
identified 2 particle sizes with a radii of 120 and 
270A respectively [2]. Moreover the calculated 
value of activation energy is of the same order of 
magnitude as for viscous flow in molten silicates 
[10l. 

The growth from a fixed number of nuclei is 
consistent with the above described heating pro- 
cess in DTA furnace. If  the temperature of nu- 
cleation is lower than that of crystallization, the 
glass first passes through a region of high nucleation 
rate and subsequently crystallizes at a higher tem- 
perature where the formation of nuclei is very 
unlikely. 

Finally as the crystalline morphology is spheru- 
litic [11], the growth of very fine and densely 
packed fibres is well described as a rod-like crystal- 
lization. 

4. Conclusions 
The usual method of obtaining kinetic data in- 
volves, as reported in the experimental procedure, 
a laborious series of measurements under iso- 
thermal conditions at different temperatures. The 

good agreement between isothermal and non- 
isothermal results confirms the convenience of 

obtaining kinetic parameters from the relatively 
quick dynamic method of DTA analysis. 

The experimental results, interpolated by a 
JMA equation with n = 1 suggest, at least in the 
range of temperatures and degrees of devitrifi- 
cation examined, a rod-like growth controlled by 
diffusion from a fixed number of nuclei. 

Such a reaction mechanism is consistent with 
the phase separation in the glass and with the 
crystalline phase morphology. 

Further investigations to identify the nature of 
the dispersed phase in as-quenched glass are re- 
quired. 
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